

UNIVERSIDAD DE ESPECIALIDADES ESPÍRITU SANTO

FACULTAD "ENRIQUE ORTEGA MOREIRA" DE CIENCIAS MÉDICAS.

Título de la investigación:

INDICE VOLUMEN PLAQUETARIO MEDIO / PLAQUETAS Y MORTALIDAD EN PACIENTES CON SEPSIS DEL HOSPITAL DR. TEODORO MALDONADO CARBO. 2016

Trabajo de titulación que se presenta como requisito previo a optar el título de MEDICO

AUTOR: SAMUEL R. QUIMI CEDILLO

TUTOR: DRA. LOURDES BEATRIZ LONGORIA BOADA

SAMBORONDÓN, SEPTIEMBRE DE 2017

APROBACIÓN DEL TUTOR

Guayaquil, 4 de septiembre del 2017

Yo Dra. Lourdes Longoria Boada, en calidad de tutor del trabajo de investigación sobre el tema INDICE VOLUMEN PLAQUETARIO MEDIO / PLAQUETAS Y MORTALIDAD EN PACIENTES CON SEPSIS DEL HOSPITAL DR. TEODORO MALDONADO CARBO. 2016 presentado por el alumno Samuel Quimí Cedillo egresado de la carrera de Medicina, Certifico que el trabajo ha sido revisado de acuerdo a los lineamientos establecidos y reúnen los criterios científicos y técnicos de un trabajo de investigación científica, así como los requisitos y méritos suficientes para ser sometido a la evaluación del jurado examinador designado por el H. Consejo de Facultad "Enrique Ortega Moreira" de Medicina, de la Universidad de Especialidades Espíritu Santo.

El trabajo fue realizado durante el periodo de octubre del 2016 a agosto del 2017 en el hospital Teodoro Maldonado Carbo de la Ciudad de Guayaquil.

Dra. Lourdes Longoria Boada

Dedicatoria:

Dedico este trabajo a mi madre que siempre estuvo apoyándome y alentándome a seguir durante el transcurso de toda la carrera. A mis hermanos que fueron fuente de inspiración y que me supieron brindar consejo cuando más lo necesité. A mi padre (†) que estaría muy orgulloso de saber que voy cumpliendo con una de tantas metas que me he planteado.

Reconocimiento:

El presente trabajo fue posible gracias a la colaboración del departamento de investigaciones del Hospital Dr. Teodoro Maldonado Carbo de la ciudad de Guayaquil y a mi tutora Dra Lourdes Longoria B.

INDICE GENERAL

INDICE DE TABLAS	. v
INDICE DE FIGURAS	vi
Resumen	vii
Introducción	. 1
CAPÍTULO 1 1.2 Antecedentes 1.2 Descripción del problema 1.3 Justificación 1.4 Objetivos Objetivo general Objetivos específicos 1.5 Hipótesis CAPÍTULO 2: 2.1 Marco teórico	3 4 5 5
Plaquetas Formación y activación de las plaquetas CD40L y P- Selectina plaquetaria Medición del volumen plaquetario medio Aplicaciones del volumen plaquetario medio Sepsis y la hemostasia 2.2 Marco Conceptual	7 10 12 12 13
CAPÍTULO 3	.19 .19 .19 .22
CAPITULO 4	. 25 25
CAPÍTULO 5	.38
REFERENCIAS	39
ANEXOS	44
Cronograma General	44
_	16

INDICE DE TABLAS

Tabla 1 Conceptualización y Operacionalización de las variables	21
Tabla 2 Carcaterísticas Clínicas y Socio-demográficas	25
Tabla 3 Análisis univariado	30

INDICE DE FIGURAS

Figura 1	Media presion arterial sistolica y diastolica	28
Figura 2	qSOFA	29
	Mortalidad enfermedad renal crónica	
Figura 4	Mortalidad uso de vasopresores	33
Figura 5	Volumen plaquetrio medio	34
Figura 6	Media Volumen plaquetario medio VPM	35
_	Media VPM/plaquetas	

Resumen

El volumen plaquetario medio (VPM) como predictor de mortalidad ha sido poco estudiado. Aunque como prueba de laboratorio se encuentra disponible desde 1970. La sepsis por otro lado es un síndrome clínico caracterizado por una inflamación sistémica que engloba anormalidades fisiológicas, biológicas y bioquímicas, que son una respuesta inflamatoria desregulada a la infección. Actualmente se disponen varios medios diagnósticos, que difieren en costos y beneficios para identificar sí un paciente se encuentra séptico. Siendo importante precisar el hecho de que dichos marcadores no indican lo mismo. El presente estudio planteó la medición del índice volumen plaquetario medio/ plaquetas como predictor de mortalidad en los pacientes con sospecha de sepsis de la unidad de cuidados intensivos del Hospital Dr. Teodoro Maldonado Carbo de la Ciudad de Guayaquil, mediante un estudio retrospectivo que analizó las historias clínicas de dichos pacientes, durante un periodo de tiempo comprendido entre el Enero a Diciembre de 2016. Por lo tanto de los resultados obtenidos no se encontró relación significativa entre el índice y la mortalidad de nuestra población (p 0,573). Sin embargo se deja una puerta abierta para realizar nuevos estudios multicéntricos prospectivos que permitan un mejor control sobre la población de estudio.

Introducción

Las plaquetas son fragmentos celulares que se encargan del control de la hemostasia, cuya función consiste en patrullar y sellar alteraciones que se presenten en la vasculatura que permitan la perdida de sangre(1). Por otra parte el volumen plaquetario medio (VPM) es un marcador que representa el tamaño de la plaqueta y que se lo ha relacionado con la sepsis debido a que en varios estudios se ha demostrado que la infección puede causar trombocitopenia y alteraciones en la actividad plaquetaria(2).

La sepsis es el conjunto de alteraciones fisiológicas y bioquímicas que se producen en contra de un agente microbiano que ataca a un individuo que tiene varias comorbilidades(3). Es una de la causas más comunes de muerte en pacientes con una estancia hospitalaria prolongada (4).

Dentro de las alteraciones que ocurren en un proceso séptico se encuentran los cambios en la hemostasia, en donde los tiempos de coagulación como el tiempo parcial de tromboplastina y el tiempo de protrombina se ven prolongados(5).

Actualmente el diagnostico tardío de la sepsis representa uno de los retos que enfrentan los servicios de salud. Resultando en retrasos terapéuticos, con el uso excesivo de antibióticos, que en ocasiones no son los de elección (6).

Aunque se han hecho adelantos valiosos en la comprensión de la patogénesis básica de la sepsis y de la compleja interacción con el huésped, el patógeno y el medio ambiente que afectan la incidencia y curso de la enfermedad la sepsis ha resistido firmemente a todos los esfuerzos para desarrollar e implementar nuevos y mejores tratamientos (7). Sin embargo hoy en día existen biomarcadores que pueden orientar al medico

si se trata de un proceso séptico, muchos de ellos tienen una susceptibilidad variable y alto costo(8).

Nuestro estudio plantea la utilización del índice VPM/ Plaquetas como un predictor de mortalidad al las 24 horas del ingreso de un paciente en una sala de cuidados intensivos, con un diagnóstico de sepsis de acuerdo a los criterios del "qSOFA"(9).

CAPÍTULO 1

1.2 Antecedentes

El volumen plaquetario medio (VPM) como predictor de mortalidad ha sido poco estudiado. Aunque como prueba de laboratorio se encuentra disponible desde 1970. En el año 2010 un estudio realizado en la Unidad de terapia intensiva del Hospital de Entrenamiento Haydarpasa en Estambul Turquía, encontró una correlación positiva entre el VPM y la severidad de la enfermedad que fue valorada por la escala de APACHE (r:34, p<0.05) siendo el único factor de riesgo independiente la edad de los paciente(10).

En el 2013 una publicación hace referencia al tema estudiando nuevamente sí los cambios en el VPM tienen un valor pronóstico en la septicemia, reconociendo como dato importante que la trombocitopenia es frecuente en aquellos pacientes. Sin embargo las diferencias fueron notorias a partir de los 10 días. Este estudio dió como resultado; que el promedio del recuento plaquetario disminuido más un VPM elevado (pacientes que no sobrevivieron) comparado con los que sobrevivieron (0.74 fL vs. 0.19 fL, p=0.03) indicaba que el VPM es un marcador pronóstico útil en los pacientes que se encuentran sépticos(2).

Para el 2014 otro estudio realizado por la Universidad de São Paulo en Brasil demostró también que con un VPM aumentado y el recuento de plaquetas disminuido en la primeras 24 horas del ingreso fue independientemente asociado con una elevada mortalidad (OR 1.28 por 1% aumentado; 95% CI 1.08 to 1.48) (11).

1.2 Descripción del problema

Hoy en día nos encontramos en una era que dispone de varios métodos analíticos y de laboratorio para realizar diagnósticos oportunos de enfermedades que precisan la instauración de un tratamiento inmediato, pero muchas de estas pruebas de laboratorio no se encuentran disponibles en todos los niveles de atención. En contraste a esto la biometría hemática en nuestro medio como prueba de rutina se encuentra implementada en la mayoría de centros de salud que disponen de un laboratorio de análisis básico. De dicha prueba podemos obtener valores referentes a 3 líneas celulares como son: la eritroide, leucocitaria y plaquetaria(12). La línea celular plaquetaria nos proporciona valores sobre el numero de las plaquetas y el tamaño (volumen plaquetario medio) las mismas que se afectan cuando existen procesos infecciosos, debido a que las bacterias son un activador importante de las plaquetas por consiguiente conducen a la agregación plaquetaria(1). Sin embargo su principal función es mediar la hemostasia(12).Por otro lado la sepsis es un síndrome clínico caracterizado por una inflamación sistémica que engloba anormalidades fisiológicas, biológicas y bioquímicas, que son una respuesta inflamatoria desregulada a la infección(13). Existe un "continuum" de severidad que va desde la sepsis hasta el choque séptico. Cada año más de 1.665.000 casos de sepsis ocurren en los Estados Unidos, con un amplio rango de mortalidad, dependiendo de la población estudiada(14). Así mismo en Ecuador según el Instituto Nacional de estadística y censo (INEC) para el año 2013 se reportaron 398 casos de sepsis grave con desenlace fatal(15). Por consiguiente se trata de un problema de salud publica que requiere iniciativas para mejorar la supervivencia basándose en herramientas que permitan un diagnóstico y terapéutica oportunos de bajo costo.

1.3 Justificación

Actualmente se disponen varios medios diagnósticos, que difieren

en costos y beneficios para identificar sí un paciente se encuentra séptico. Siendo importante precisar el hecho de que dichos marcadores no indican lo mismo. Entre los mas usados tenemos a la interleucina 6 (IL6) y procalcitonina (PCT)(8).

La IL6 puede señalar un proceso inflamatorio mas no infección; otros en cambio pueden indicar infección ya que pueden detectar endotoxinas. Sin embargo uno de los marcadores más utilizados es la PCT que indica infección bacteriana y se relaciona con la mortalidad(16).

Se plantea el uso del índice VMP/plaquetas como predictor de mortalidad en pacientes sépticos, por ser una herramienta de fácil acceso que se obtiene a partir de los valores de la biometría hemática. Siendo de gran utilidad en diagnóstico temprano de estados fisiopatológicos como la sepsis o el choque séptico en donde la terapéutica oportuna mejora el pronóstico y reduce la mortalidad.

1.4 Objetivos

Objetivo general

Determinar si el índice VPM/plaquetas se asocia con la mortalidad de los pacientes con sospecha de sepsis del Hospital. Dr. Teodoro Maldonado Carbo.

Objetivos específicos

 Determinar las características sociodemográficas de la muestra de estudio.

- 2. Calcular el índice VPM/plaquetas de los pacientes con diagnóstico de septicemia no especifica.
- 3. Analizar si el índice VPM/plaquetas se relaciona con la mortalidad de los pacientes con diagnóstico de septicemia no especifica.

1.5 Hipótesis

El índice VPM/plaquetas un predictor de mortalidad en los pacientes con diagnóstico de septicemia no especifica.

CAPÍTULO 2:

2.1 Marco teórico

Plaquetas

Las plaquetas fueron descritas en 1842 por Donné y son fragmentos celulares que derivan de los megacariocitos producidos en la médula ósea, cumpliendo una función central como células mediadoras de la hemostasia que además intervienen en procesos inflamatorios, ateroesclerosis y protrombóticos(17).

El conteo de las plaquetas y su función en los pacientes críticos, especialmente en pacientes con sepsis, han sido aclarados por varios estudios previos. Aunque el mecanismo subyacente todavía no es entendido en su totalidad, la sofisticada interacción de plaquetas con agentes patógenos y las células endoteliales puede culminar en la sepsis junto con una severa cascada fisiopatológica caracterizada por reducciones significativas en la función plaquetaria y el recuento de las mismas(18).

El volumen plaquetario medio (VPM) es la medida del volumen plaquetario que se relaciona directamente con el tamaño de las plaquetas con un punto de corte de 5 a 12 fentolitros (fL)(12). Por otra parte se lo ha propuesto como un marcador de inflamación, disfunción endotelial y trombosis que toma importancia en aquellas enfermedades que tienen un componente inflamatorio y protrombótico(19).

Formación y activación de las plaquetas

Los megacariocitos son los precursores de las plaquetas, son células anucleados que se unen a la corriente de la sangre periférica. La activación esta conformada por tres fases: iniciación, extensión y estabilización. Varias moléculas se liberan de las plaquetas durante el proceso de activación y su presencia en cantidades significativas implica que se han liberado debido a la inflamación. Además Las plaquetas contienen tres tipos principales de gránulos: α , δ y λ que generalmente circulan en un estado inactivo. los gránulos mas abundantes son los α de 50 – 80 gránulos que representan el aproximadamente el 10% de la masa plaquetaria total. Además, proporcionan un reservorio grande en la membrana, que facilita el aumento en tamaño de la plaqueta tras la iniciación y extensión(1). La membrana de las plaquetas posee proteínas y receptores funcionalmente activos que normalmente no se encuentran en el plasma. Los Gránulos α producen proteínas bioactivas involucradas en la iniciación y propagación de la trombosis y la inflamación. Algunos de los moduladores inflamatorios almacenados son liberados de los gránulos α tales como: P-selectina, fibrinógeno, factor de Von Willebrand y el ligando soluble de CD40 (sCD40L)(20).

Iniciación

La activación depende de cambios en el complejo glicoproteína IIb/IIIa y la exposición de las proteínas de la membrana del gránulo de las plaquetas que hayan secretado y del desarrollo de superficies procoagulantes(20). Estos se consideran como marcadores de laboratorio de la activación plaquetaria(21).

Las plaquetas actúan una vez que que ocurre la ruptura de un vaso, exponiéndose e interactuando con las fibrillas de colágeno(22). La interacción de las plaquetas con el colágeno no sólo proporcionan una superficie para la adherencia plaquetaria, si no que también sirve como un fuerte estímulo para la activación de más plaquetas. Esto da lugar a las

vías de señalización que inducen a las plaquetas a cambiar su forma, extendiéndose a lo largo de las fibrillas del colágeno para secretar tromboxano A2 (TXA2) y adenosín difosfato (ADP) en la circulación. Los tromboxano A2 y ADP liberados estimulan las plaquetas vecinas, haciendo que se activen(22).

Extensión

Las plaquetas activadas no sólo secretan tromboxano A2 y ADP, sino que también se unen directamente a la proteína de coagulación circulante fibrinógeno, a través de la glicoproteína integrina plaquetaria (GP) IIb/IIIa. El fibrinógeno puede atar simultáneamente dos receptores de GPIIb/IIIa y puede por lo tanto funcionar como acoplamiento entre dos plaquetas. Esta conexión plaqueta fibrinógeno plaqueta inicia el proceso de agregación plaquetaria(23). Puesto que cada plaqueta tiene 40.000 a 80.000 copias de GPIIb/IIIa en su superficie, grupos muy grandes de plaquetas pueden armarse en el sitio de la activación de la plaqueta. Un coágulo reticulado de fibrina estabiliza en última instancia el creciente agregado plaquetario(23).

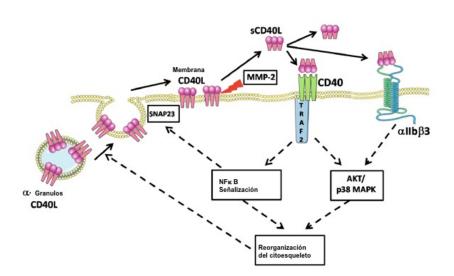


Imagen 1 Descripción esquemática de la regulación de la CD40L

plaquetaria y el papel de la sCD40L en la señalización después de la Unión a CD40 y αIIbβ3 de la plaqueta que induce un bucle de autoamplificación. Adaptada de Int J Mol Sci. 2014 Dec 3;15(12):22342-6

Estabilización

Una vez formado, el nuevo tapón hemostático, este debe condensarse y estar firmemente anclado en el lugar de la lesión para resistir la fuerza de la sangre que fluye y prevenir el resangrado. Además de activar las plaquetas, la trombina convierte el fibrinógeno en fibrina, formando una red de fibras de fibrina que ayuda a estabilizar el tapón plaquetario. La estabilización también es facilitada por la consolidación de la masa plaquetaria a través de la retracción plaquetaria mediada por proteínas como la actina y miosina(23). La activación plaquetaria se ve reforzada por la retroalimentación positiva de la trombina, ADP y Tromboxano A2, así como por las vías de señalización por contacto que se inician una vez que las plaquetas se acercan entre sí de manera que los pares de receptores/ligandos en las plaquetas adyacentes se anclan. Una vez más, la integrina αIIbβ3 tiene un papel importante en esta etapa, actuando ahora como una molécula de señalización que regula los procesos retráctiles de plaquetas(23).

CD40L y P- Selectina plaquetaria

Una vez que las plaquetas se han activados el ligando CD40L se expresa así en la superficie de las plaquetas, esta molécula es idéntica en términos de estructura y de función fisiológica a la membrana encuadernada CD40L expresado en linfocitos T activados y otras células(24). Puede generar notablemente señales para el reclutamiento y la extravasación de leucocitos. Además induce a través del encargo de CD40 la secreción de quimiocinas y la expresión de receptores de adhesión en las células endoteliales. Proporciona un acoplamiento de gran

alcance entre las plaquetas y el sistema inmune: CD40L expresado en las plaquetas activadas induce la maduración dendrítica de las células, la conmutación isotipo de la célula-B, aumentando las respuestas de CD8 de las células T en modelos in vitro e in vivo(24).

Finalmente la activación se asocia también a la expresión de P-selectina, que se transloca de la membrana de los gránulos α de la superficie de la plaqueta, para permitir la adhesión de los leucocitos(20). Dicha adhesión es débil lo que facilitará el fenómeno de rodamiento a los leucocitos. Por otra parte estudios realizados en ratones permitieron demostrar que los niveles elevados en plasma de P-selectina son una consecuencia de la enfermedad cardiovascular más que una causa(25).

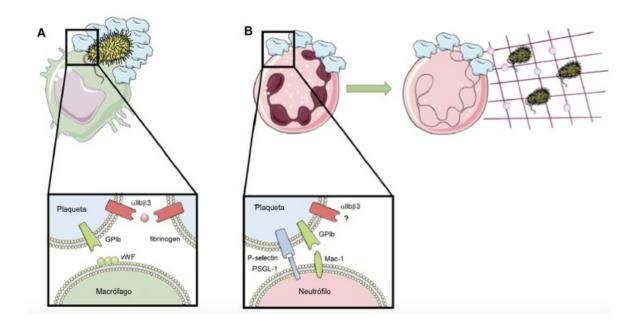


Imagen 2 Interacción de la P- selectina con la superfice bacteriana.
Adaptada de C. Deppermann, P. Kubes / Seminars in Immunology xxx
(2016) xxx–xxx.

Medición del volumen plaquetario medio

El volumen plaquetario medio (VPM) es el volumen de la media de las plaquetas en femtolitros (fL), similar al volumen corpuscular medio para glóbulos rojos de la circulación. El valor de la VPM se determina por la media geométrica del transformado log-normal del volumen plaquetario en los sistemas de tecnología por impedancia; o puede medirse utilizando tecnología óptica, donde en algunos sistemas el VPM es el modo del volumen medido de la plaqueta. Así, el VPM varía según el método por el que se mide es decir, es específico del instrumento(26).

Aplicaciones del volumen plaquetario medio

El VPM como biomarcador esta siendo utilizado en varios campos de la medicina donde el origen de la patología tiene un componente inflamatorio y protrombótico como por ejemplo el shock séptico, accidente cerebrovascular (ACV), infarto agudo de miocardio (IAM) e incluso como marcador tumoral en el carcinoma hepatocelular(27)(28)(29)(30).

En el shock séptico existen cambios en la coagulación sanguínea que se manifiestan en la prolongación del tiempo parcial tromboplastina y el tiempo de protrombina, y la disminución del recuento plaquetario que se correlaciona con el pronóstico, debido a que cuando el paciente se recupera, estos valores vuelven a la normalidad(27).

Las plaquetas y el VPM se han relacionado con el ACV de tipo isquémico, debido a la gran actividad plaquetaria, cuando un paciente posee factores de riesgo tales como: diabetes, hipercolesterolemia y síndrome metabólico. Todos estos factores generan un estado protrombótico con gran agregación de adenosina difosfato, adrenalina y aumento del tromboxano A2 que empeoran el pronóstico. El incremento del VPM incluso ha sido descrito en los pacientes con ACV de tipo

isquémico previos(28).

La asociación entre la enfermedad coronaria y un VPM elevado se ha demostrado por los mecanismo proinflamtorios y prodrómicos que intervienen. Además se ha estudiado la relación que tiene un elevado VPM con el infarto agudo de miocardio (IAM); mediante la medición del índice VPM/Plaquetas que tuvo una tasa alta de supervivencia cuando el VPM/Plaquetas se encontraba en rango de medio de (30-40 fL) en comparación con un VPM/Plaquetas bajo o alto(29).

El Carcinoma hepatocelular es uno de los tumores primarios del hígado que posee pocos biomarcadores que puedan detectar prontamente la enfermedad, resultando así en un mal pronostico. El volumen plaquetario medio es un parámetro de rutina hemograma que proporciona una mirada en la función plaquetaria y su activación. Los cambios del VPM se han investigado activamente en muchas enfermedades del hígado como por el ejemplo: hígado graso no alcohólico, colestasis intrahepática del embarazo, la hepatitis crónica y cirrosis hepática(31). Sin embargo se ha estudiado también el valor pronóstico del VPM/Plaquetas comparado con la Alfa feto proteína (AFP) en el carcinoma hepatocelular, mostrando una sensibilidad del 80% y especificidad 82% con un valor de corte de 16.9 ng/dl mientras que el VPM y VPM/Plaquetas fueron menos sensibles y menos específicos por lo que se recomienda el uso del VPM en conjunto con la AFP(30).

Sepsis y la hemostasia

Las plaquetas contribuyen a la inflamación sin embargo, el papel de la activación de la plaqueta durante la respuesta fisiopatológica a la infección y a la sepsis bacteriana no está claro. No obstante la sepsis se encuentra bien relaciona con una desregulación de la hemostasia. Las plaquetas juegan un papel importante procesos tromboembólicos,

aproximadamente un 40% de pacientes con diagnostico de sepsis tienen un conteo de plaquetas < 80,000/ mm³(32). Por lo tanto se han realizado estudios en pacientes con sepsis y se han demostrado que el conteo de plaquetas es bajo por lo que se piensa que este parámetro podría ayudar al diagnostico temprano de sepsis(33).

La trombocitopenia parece ser un acontecimiento de la última etapa de la sepsis y puede ser un predictor independiente del daño y de la mortalidad del órgano en pacientes críticamente enfermos(34). La disminución en el conteo de plaquetas puede ser un resultado secundario de la coagulación incontrolada del plasma o puede ser precedida por la activación plaquetaria directa durante la inflamación aguda(35).

Durante el shock séptico se inducen alteraciones en la micro circulación que ocasionan hipoperfusión y depleción de oxigeno que llevan al individuo al daño multiorgánico e inclusive a la muerte(36). Este fenómeno se produce por la coagulopatía, que resulta en la formación de un micro trombo que juega un papel importante en la alteración microvascular. Esto es influenciado por mediadores proinflamtorios que son activados por las endotoxinas bacterianas (imagen 2) que son reconocidas por los receptores de reconocimiento de patrones que disparan una cascada de señales que activan el factor de transcripción Kappa B que median la producción masiva de mediadores inflamatorios y que generan un estado de hipercoagulación(37). Seguido de esto el micro trombo generado por el estado de hipercoagulabilidad causa oclusión de la microcirculación y por ende isquemia e hipoperfusión que genera a su vez la muerte celular(38).

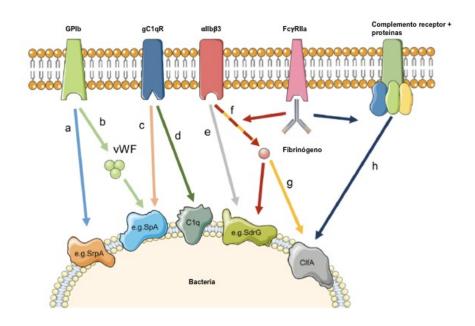


Imagen 3 Interanción de la superfice plaquetaria con la superficie de la bacteria. Adaptada de C. Deppermann, P. Kubes / Seminars in Immunology xxx (2016) xxx–xxx

Actividad plaquetaria y fármacos

La aspirina inhibe la síntesis de prostaciclina a partir de ácido araquidónico en las células endoteliales, y la prostaciclina endotelial inhibe la agregación plaquetaria y promueve la vasodilatación(39). El efecto inhibitorio de la aspirina en la generación de TXA2 es considerablemente más fuerte que su efecto inhibidor sobre la generación de prostaciclina. Debido a la corta vida media de la aspirina y la capacidad de las células endoteliales para generar nuevas ciclooxigenasa 1 (COX-1), el efecto inhibitorio a bajas dosis de aspirina sobre las células endoteliales es muy débil o ausente, y en cualquier caso de corta duración(22).

El clopidogrel inhibe la señalización mediada por ADP, de tal modo que degrada el fibrinógeno que ata su receptor a la plaqueta (GPIIb/IIIa) e inhibe la agregación plaquetaria en respuesta a muchos agonistas, particularmente ADP. El efecto sobre la agregación plaquetaria inducida

por ADP parece considerar la disminución observada en las respuestas a las bajas concentraciones de otros agonistas, ya que el ADP liberado de gránulos densos juega un papel en esas respuestas(22).

2.2 Marco Conceptual.

Recuento de plaquetas: Es el número de plaquetas por microL de sangre (o el número de plaquetas x 10/l). Un recuento de plaquetas elevado (es decir, Trombocitosis, también llamada trombocitemia) puede verse en condiciones reactivas y neoplásicas. Por otro lado un recuento de plaquetas disminuido (es decir, trombocitopenia) puede reflejar la destrucción de plaquetas, secuestro o Trombopoyesis ineficaz(22).

Volumen plaquetario medio: (VPM) es el volumen promedio (tamaño) de las plaquetas del paciente medido en femtolitros (fL). La evaluación del VPM debe hacerse en el contexto del recuento de plaqueta(40).

Sepsis: se define como la presencia (probable o documentada) de infección con manifestaciones sistémicas de infección(41).

Shock séptico: Se define como un subconjunto de la sepsis que incluye anomalías en el sistema circulatorio y metabolismo celular que son lo suficientemente profundas para aumentar la mortalidad. El 2001 la "task force" lo definió como un estado de insuficiencia circulatoria aguda.(3)(42).

Disfunción multiorgánica: la disfunción multiorgánica es un continuo, con grados incrementados de trastornos fisiológicos en los diferentes órganos; es un proceso más que un solo evento. La alteración en la función del órgano puede variar ampliamente de un grado leve de disfunción orgánica a falla completa del órgano que es un proceso completamente irreversible(43).

qSOFA: La puntuación de qSOFA también conocida como "quick SOFA (Sequential Organ Failure Assesment)" es un indicador que se lo utiliza para identificar a pacientes con sospecha de infección que tienen un peor pronostico dentro de la unidad de cuidados intensivos. Utiliza tres criterios, asignando un punto por la presión arterial baja (SBP≤100 mmHg), frecuencia respiratoria alta (≥22 respiraciones por minuto) o alteraciones del sensorio (escala de coma de Glasgow < 15) (44). La puntuación varía de 0 a 3 puntos. La presencia de 2 o más puntos de qSOFA cerca de la aparición de la infección se asoció con un mayor riesgo de muerte o estancia unidad de cuidados intensivos prolongados(9).

2.3 Marco legal

La ley de derechos y amparo del paciente de Ecuador, en su ultima modificación del 22 de diciembre del 2006, estipula en el capitulo II los siguiente artículos que protegen al paciente:

- Art. 2.-Derecho a una atención digna.- "Los pacientes poseen el derecho a una atención oportuna en un centro de salud, conforme a la dignidad que todo ser humano merece de que se le dé un trato respetuoso, esmerado y cortes" (45).
- Art. 3.-Derecho a no ser discriminado.- "Los pacientes tienen derecho a que no les discriminen por ninguna razón, sea sexo, raza, edad, religión o condición socio-económica" (45).
- Art. 4.- Derecho a la confidencialidad.- "Los pacientes poseen derecho a la confidencialidad cuando acudan a la consulta, examen, discusión, diagnóstico u otra clase de información que se relacione con el procedimiento médico que se aplique" (45).
 - Art. 5.-Derecho a la información.- "Se conoce el derecho que

poseen los pacientes antes y durante las diferentes etapas de su atención, de modo que el paciente, tenga la debida información sobre diagnóstico de su estado de salud, tratamiento, riesgos, medicación, duración de su incapacitación y las opciones de tratamiento y cuidados con el fin de que pueda tomar una determinación sobre el proceso a seguir. Excepto casos de emergencia." El paciente posee el derecho a la información que debe suministrarle el centro de salud, sobre quien es el médico responsable de su tratamiento.(45).

Art. 6.-Derecho a decidir.- "Todo paciente tiene derecho a elegir si acepta o declina el tratamiento médico. En ambas circunstancias el centro de salud deberá informarle sobre las consecuencias de su decisión" (45).

CAPÍTULO 3

METODOLOGÍA

3.1 Diseño de la investigación

Se plantea un estudio retrospectivo analítico basado en una población hospitalaria por medio de la revisión de historias clínicas electrónicas cuya búsqueda fue realizada a través de códigos pertenecientes a los pacientes.

3.2 Población y Muestra

Los pacientes fueron seleccionados de una base de datos original 531 pacientes que fue proporcionada por el departamento de estadísticas del Hospital Dr. Teodoro Maldonado Carbo, en la cual se incluyeron a todos los diagnósticos con código CIE-10 A-41.9 hospitalizados en la unidad de cuidados intensivos durante un periodo comprendido entre Enero a Diciembre del 2016.

Basándonos en nuestros criterios de inclusión y exclusión de la base de datos original se eliminaron los pacientes repetidos. Por lo tanto se identificaron 64 historias clínicas para explorar, de esas se eliminaron 15 porque solo constaban en la base de datos por tener una nota de interconsulta a Terapia Intensiva. De los 49 restantes se excluyeron 3 pacientes con Lupus, 1 con Síndrome de HELLP y 1 paciente menor a 18 años. Por lo tanto se analizaron 44 historias clínicas.

Criterios de inclusión:

- 1. Septicemia, código CIE-10 A-41.9 (septicemia, no especificada)
- 2. Edad > 18 años.

Criterios de exclusión:

- 1. Valor de conteo total de plaquetas menor a 150.000/por mm³ o mayor a 400.000/por mm³.
- 2. Defectos cualitativos de las plaquetas, código CIE-10 D691.
- 3. Trombocitosis esencial, código CIE-10 D752.
- 4. Trombocitopenia (hemorrágica) esencial, código CIE-10 D473.
- 5. Trombocitopenia primaria, código CIE-10 D694.
- 6. Trombocitopenia secundaria, código CIE-10 D695.
- 7. Trombocitopenia no especificada, código CIE-10 D696.
- 8. Insuficiencias hepáticas, código CIE-10 K720, K721, K729.

Tabla 1 Conceptualización y Operacionalización de las variable

Hipótesis	Variables	Tipo de variable según su naturaleza	Tipo de variable según su relación	Indicador o definición operativa	Escala de medición	Categoría y valores
	Volumen plaquetario medio	Cuantitativa	Independiente	Aumento del VPM > 11.7 fL	Razón	Femtolitros
El índice VPM/plaqu etas un predictor de mortalidad en los	Mortalidad	Cualitativa	Dependiente	Deceso del paciente.	Nominal	Falleció: () Sí () No
pacientes con sepsis severa o choque séptico.	Edad	Cuantitativa	Interviniente	Años de vida que tienen los pacientes.	Razón	Años
	Sexo	Cualitativa	Interviniente	Masculino o femenino	Nominal	() Varón () Mujer

Estancia en UCI	Cuantitativa	Interviniente	Número de días que permaneci ó en UCI	Razón	Días
qSOFA	Cuantitativa	Interviniente	Score basado en presión arterial, frecuencia respiratoria y estado mental	Razón	0 a 3
Proteína C reactiva	Cuantitativa	Interviniente	Valor de proteína C reactiva al ingreso	Razón	Valor obtenido del laboratorio
Procalcitoni na	Cuantitativa	Interviniente	Valor de proteína C reactiva al ingreso	Razón	Valor obtenido del laboratorio
Lactato	Cuantitativa	Interviniente	Valor del lactato al ingreso a UCI	Razón	Valor obtenido del laboratorio

3.3 Descripción de los instrumentos

En coordinación con el departamento de Estadísticas y Censos del

Hospital "Dr. Teodoro Maldonado Carbo" del IESS, se obtuvieron los números de las historias clínicas de los pacientes con el código para Septicemia.

Los datos que se consiguieron de la revisión de las historias clínicas, fueron tabulados en una hoja de Excel y analizados con el paquete estadístico IBM SPSS Statistics versión 21.

Para la extracción de datos de las historias clínicas se utilizó una plantilla predefinida para la recolección. Se obtuvo datos demográficos tales como edad y sexo y además valores de score q SOFA, PCR, Procalcitonina y lactato al ingreso. Se obtuvieron así mismo, los días de estancia hospitalaria. Se generaron tablas y gráficos pertinentes con el programa estadístico.

Índice VPM/plaquetas

Para la obtención de este índice se tomó como numerador el VPM reportado en el laboratorio de ingreso definido como el primer examen realizado en ese paciente para el ingreso por septicemia. Como denominador se utilizó el contaje total de las plaquetas. Por lo tanto se obtuvo el índice por medio de una división simple.

Mortalidad

La mortalidad como desenlace se obtuvo del departamento de Estadística del Hospital. El mismo que fue expresado como variable cualitativa categórica dicotómica.

3.4 Análisis Estadístico

Se exploró la normalidad de la distribución de las variables

generando histogramas y usando el test de Shapiro-Wilk, definiendo como distribución normal las variables con una p > 0,05 según dicho test y mediante una evaluación de los histogramas.

Las variables cualitativas fueron expresadas en frecuencias y porcentajes y la distribución de las mismas fue comparada entre los grupos mediante el test de Chi cuadrado o el test de Fisher según sea apropiado. Las variables cuantitativas fueron expresadas en términos de media con sus desviaciones estándar y comparadas entre grupos mediante el test para dos muestras independiente o la prueba de Mann-Whitney según sea apropiado de acuerdo a la distribución de las variables en función de la variable dependiente (mortalidad). Un valor p < a 0,05 se consideró estadísticamente significativo.

Todos los análisis se realizaron con el programa estadístico SPSS versión 12 y a partir de los resultados principales se generaron tablas y gráficos.

3.5 Aspectos Éticos

Dadas las características inherentes al diseño retrospectivo del estudio no se solicitará aprobación por comité de ética alguno. El comité científico de la Institución donde se realizó el trabajo de tesis emitió un documento donde se aprobó el presente trabajo científico.

CAPITULO 4

4.1 ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1.1 Resultados

Estadística descriptiva

De la base de datos original se eliminaron los pacientes repetidos. Se identificaron 64 historias clínicas para explorar, de esas se eliminaron 15 porque solo constaban en la base de datos por tener una nota de interconsulta a terapia intensiva, pero nunca hubo un traslado del paciente a UCI. De los 49 se excluyeron 3 pacientes con Lupus, 1 con Síndrome de HELLP y 1 paciente menor a 18 años. Se analizaron las historias clínicas de 44 pacientes.

La edad promedio fue de 60 ± 18 años y un total de 16 (36,4%) fueron mujeres. Las características y clínicas y socio-demogáficas principales se presentan en la tabla 2.

Tabla 2 Carcaterísticas Clínicas y Socio-demográficas

Carcaterísticas Clínicas y Socio-	Serie total n= 44
demográficas	
Edad	60 ± 18
Sexo Femenino, n (%)	16 (36,4)
VIH, n (%)	2 (4,5)

Hipertensión, n (%)	27 (61,4)			
Diabetes, n (%)	16 (36,4)			
Tuberculosis, n (%)	2 (4,5)			
Enfermedad Hepática, n (%)		2 (4,5)		
Neoplasia, n (%)		4 (9,1)		
Enfermedad Cardiovascular, n (%)		6 (13,6)		
Enfermedad Cerebrovascular, n (%)		3 (6,8)		
Enfermedad Renal Crónica, n (%)		16 (36,4)		
PAS		128 ± 36		
PAD		74 ± 16		
Frecuencia Respiratoria		22 ± 5		
qSOFA, n (%)	0	6 (13,6)		
	1	22 (50)		
	2	13 (29,5)		
	3	3 (6,8)		
PCR cUS		20,7 ± 11,6		
Procalcitonina		10,8 ± 21		
Glóbulos blancos (per mm3)		15533,15 ± 9804		
Hemoglobina (mg/dl)		10 ± 1,8		
Hematócrito (%)		30,7 ± 1,8		
Plaquetas (x1000 per mm3)		240,9 ± 121,6		
VPM (fl)		10,65 ± 0,9		

VPM/Plaquetas	0,58 ± 0,36
Sodio (mmol/l)	140 ± 8
Potasio (mmol/l)	4 ± 1
Urea (mg/dl)	79 ± 62,2
Creatinina (mg/dl)	2,2 ± 2,1
AST (U/I)	71,3 ± 126,1
ALT (U/I)	80,9 ± 188,8
Albúmina (g/dl)	2,4 ± 0,7
Vasopresores, n (%)	23 (52,3)
Estancia en UCI (días)	22 ± 19
Mortalidad, n (%)	22 (50)

La comorbilidad más frecuente fue la hipertensión arterial (61,4%), seguido por la diabetes y la ERC en igual porcentaje (36,4%).

La media de PAS fue de 128 \pm 36 y de PAD fue de 74 \pm 16 (Figura 1). En promedio la FR fue de 22 \pm 5.

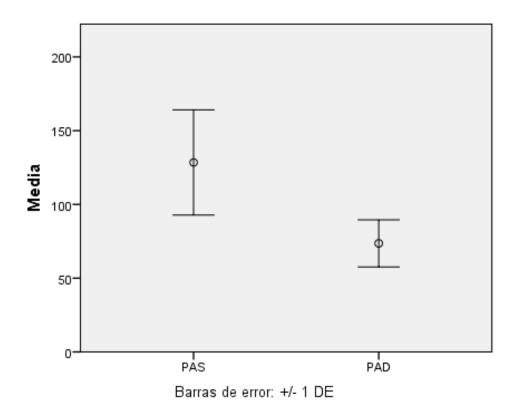


Figura 1 Media presion arterial sistolica y diastolica

Se calculó el score q SOFA a partir de los signos vitales tomados justo antes del ingreso a la UCI acompañado del reporte en la historia clínica de alteración de la consciencia. El score qSOFA de 1 se determinó en la mitad de los pacientes. La otra mitad, la conformaron 29,6%; 13,6% y 6,8% de pacientes con los scores 2, 0 y 1; respectivamente (Figura 2).

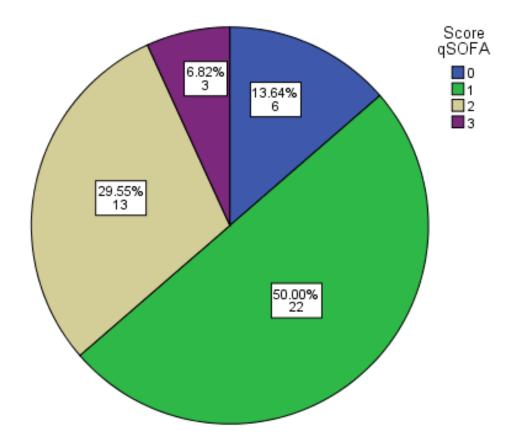


Figura 2 qSOFA

Los parámetros de laboratorio se describen en la tabla 2. La media de los niveles de plaquetas (x1000/mm 3) fue de 240,9 ± 121,6. Los valores promedio de VPM fueron de 10,65 ± 0,9. El índice VPM fue en promedio 0,58 ± 0,36.

Se registró una mortalidad global del 50% en todos los pacientes. Se estratificó de acuerdo a la variable mortalidad para comparar las distribuciones y medias de las demás variables en función de la mortalidad.

En la tabla 3 se muestran los resultados del análisis univariado del cuál se puede apreciar una diferencia significativa en las medias de: edad

(p=0,003), creatinina (p=0,022) y ALT (p=0,012). En todos aquellos se notaron medias mayores en el grupo que falleció.

Tabla 3 Análisis univariado

Serie (n= 44)	Mortalida		
Características	Fallecido (n=22)	Sobreviviente (n=22)	Valor p
Edad en años, media (±DE)	68,09 (±12,79)	52,27 (±19,45)	0,003
Sexo femenino, n (%)	8 (36,4)	8 (36,4)	1,000
VIH, n (%)	1 (4,5)	1 (4,5)	1,000
Hipertensión, n (%)	15 (55,6)	12 (44,4)	0,353
Diabetes, n (%)	11 (68,8)	5 (22,7)	0,060
TB, n (%)	1 (4,5)	1 (4,5)	1,000
Enfermedad Hepática, n (%)	1 (4,5)	1 (4,5)	1,000
Neoplasia, n (%)	2 (9,1)	2 (9,1)	1,000
Enfermedad cardiovascular, n (%)	3 (13,6)	3 (13,6)	1,000
Enfermedad cerebrovascular, n (%)	2 (9,1)	1 (4,5)	1,000
ERC, n (%)	12 (54,5)	4 (18,2)	0,027

PAS, media (DE)	126 ± 41	131 ± 30	0,364
PAD, media (DE)	69,41 ±15,63	77,77 ±15,56	0,083
Frecuencia respiratoria [rpm], media ± DE	21,41 5,01	21,73 ± 5,8	0,846
qSOFA, n (%)			0,012
Score 0	1 (4,5)	5 (22,7)	
Score 1	8 (36,4)	14 (63,6)	
Score 2	11 (50)	2 (9,1)	
Score 3	2 (9,1)	3 (6,8)	
PCR, media (DE)	18,2 ± 10,6	23 ±12,3	0,198
Procalcitonina, media (DE)	13,7 ± 21,1	7,8 ± 21,0	0,051
Leucocitos x mm3, media (DE)	15647,8 ± 10366,92	15647,86 ± 10366,92	0,742
Hemoglobina [mg/dl], media (DE)	9,9 ± 1,9	10,1 ± 1,8	0,717
Hematócrito [%], media (DE)	30,2 ± 4,8	31,1 ± 5,3	0,582
Plaquetas x1000 per mm3, media (DE)	248,550 ± 129,925	233,236 ± 115,164	0,681
VPM fl, media (DE)	10,55 ± 0,99	10,76 ± 0,89	0,4650
Índice VPM/Plaquetas	0,059 ± 0,039	0,057 ± 0,033	0,573

Sodio mmol/l, media (DE)	140,8 ± 7,2	138,6 ± 8	0,365	
Potasio mmol/l, media (DE)	3,9 ± 0,8	4 ± 0,5	0,676	
Urea mg/dl, media (DE)	90,5 ± 68,8	67,5 ± 54,0	0,177	
Creatinina mg/dl, media (DE)	2,8 ± 2,3	1,7 ± 1,9	0,022	
AST U/L, media (DE)	33,2 ± 22,7	109,5 ± 170,3	0,051	
ALT U/L, media (DE)	25,1 ± 35,5	136,6 ± 255,4	0,009	
Albúmina g/dl, media (DE)	2,2 ± 0,6	2,5 ± 0,7	0,267	
Estancia en UCI en días, media (DE)	21 ± 19	22 ± 18	0,842	
Requerimiento de vasopresores, n (%)	18 (81,8)	5 (22,7)	< 0,001	

Las diferencias en las frecuencias que resultaron significativas fueron ERC (p=0,027), qSOFA (p=0,012) y requerimiento de vasopresores (p=<0,001). En todas se observó mayor porcentaje en aquellos que fallecieron (Figuras 3 y 4)

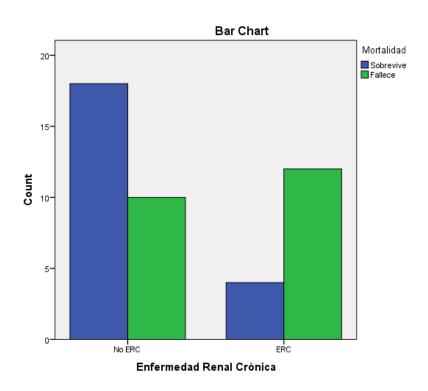


Figura 3 Mortalidad enfermedad renal crónica

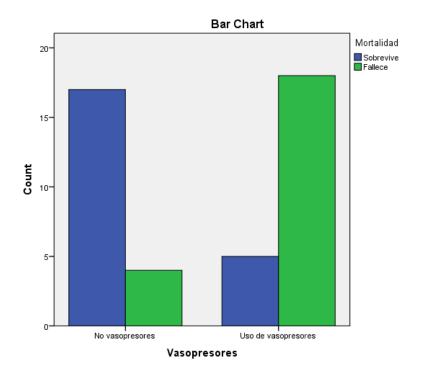
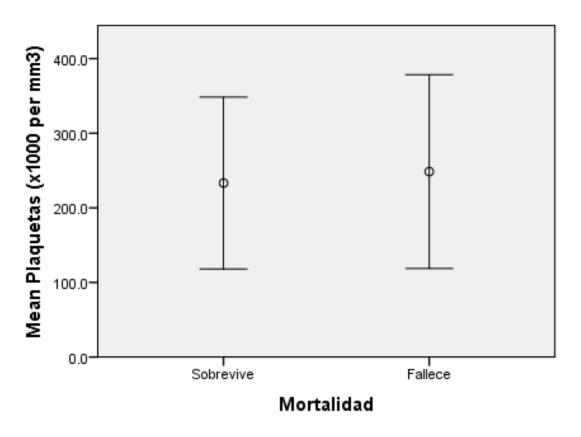




Figura 4 Mortalidad uso de vasopresores

La media de las plaquetas en el grupo que fallecieron fue de 248,550 \pm 129,925 y la media de VPM en el mismo grupo fue de 10,55 \pm 0,99. La diferencia con de medias con el grupo de los sobreviviente no fue significativa (p=0,681 y p=0,465; respectivamente) (Figura 5 y 6).

Barras de error: +/- 1 DE

Figura 5 Volumen plaquetrio medio

Barras de error: +/- 1 DE

Figura 6 Media Volumen plaquetario medio VPM

No se encontró diferencias significativas entre las medias del índice VPM/plaquetas en relación a la mortalidad $(0,059\pm0,039\,\text{vs.}\,0,059\pm0,039;$ p=0,573) (Figura 7).

Barras de error: +/- 1 DE

Figura 7 Media VPM/plaquetas

4.1.2 Discusión

la sepsis es una patologia importante que require una valoración diagnóstica pronta y oportuna debido a las complicaciones que se han mencionado en este estudio. Por lo que se planteo el uso de un biomarcador de bajo costo como lo es el Volumen plaquetario medio (VPM) que se lo obtiene de la biometria hematica completa en los examen de rutina de todo paciente . Se propuso el uso del indice VPM/ plaquetas como predictor de mortalidad en los pacientes con sospecha de sepsis y que requirieron internación en la UCI. En estudios recientes se ha reportado

que el VPM esta asociado a varias patologias como por ejemplo la enfermedad coronaria y el carcinoma hepatocelular(29)(30).

Existen varios estudios en los que solo valoraron el VPM; como el de Zampieri y Can Ho quienes encontraron que los pacientes con sepsis que no sobrebieron tuvieron una elevacion en los valores del VPM a las 24 horas de admision en la UCI(11)(18). Por otro lado hay pocos estudios en los que se utiliza el indice VPM/plaquetas para predecir la mortalidad como por ejemplo el de Ates que uso el indice VPM/ plaquetas en un variado grupo de pacientes, en el que el conteo de plaquetas era bajo pero no resulto ser estadísticamente significativo. Sin embargo en los resultados finales lograron demostrar una sensibilidad del 71% y una especificidad del 63% con un punto de corte del indice de 8.915.

En nuestro estudio media de los niveles de plaquetas fue de 240,9 \pm 121,6 con valores promedio de VPM de 10,65 \pm 0,9. Con un indice VPM/plaquetas de 0,58 \pm 0,36. Sin embargo no se encontró diferencias estadísticamente significativas entre las medias del índice VPM/plaquetas en relación a la mortalidad (0,059 \pm 0,039 vs. 0,059 \pm 0,039; p=0,573). Por lo tanto no se pudo comprobar que el índice VPM/plaquetas sea un marcador útil para determinar sepsis.

CAPÍTULO 5

5.1 CONCLUSIONES

El presente estudio cumplio con los objetivos que se plantearon durante el tiempro correspondiente. Sin embargo la hipotesis planteada no se logró demostrar, debido a que el resultado de la media del indice VPM/ plaquetas no fue lo suficientemente significativa en comparacion con los pacientes que sobrevivieron. Por otro lado la comorbilidades asociadas como la enfermedad renal cónica y el uso de vasopresores se asociaron con mayor mortalidad en este grupo de estudio.

5.2 RECOMENDACIONES

Se recomienda realizar estudios multicéntricos prospectivos para validar la utilidad de la relación del indice del VPM/plaquetas como marcador pronóstico en poblaciones heterogéneas de pacientes con sospecha de sepsis. Sin embargo otro aspecto importante sería evaluar los efectos secundarios de las drogas que se suelen utilizar dentro de unidad de cuidados intensivos sobre las plaquetas, antes de hacer las conclusiones finales. Por lo tanto se deja una puerta abierta para futuras investigaciones en las que se reuna una población más homogenia.

REFERENCIAS

- Deppermann C, Kubes P. Platelets and infection. Semin Immunol. 2016;28(6):536–45.
- 2. Kitazawa T, Yoshino Y, Tatsuno K, Ota Y, Yotsuyanagi H. Changes in the mean platelet volume levels after bloodstream infection have prognostic value. Intern Med. 2013;52(13):1487–93.
- 3. Singer M. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama. 2016.
- 4. Reinhart K, Bauer M, Riedemann NC, Hartog CS. New approaches to sepsis: Molecular diagnostics and biomarkers. Clin Microbiol Rev. 2012;25(4):609–34.
- Tani VM, Assis-Mendonça GR, da Silva TB, Rogerio F, De Paula E
 V. Microvascular thrombosis in sepsis: An autopsy study. Thromb
 Res. 2017 Aug;156:23–5.
- 6. Tsao CM, Ho ST, Wu CC. Coagulation abnormalities in sepsis. Acta Anaesthesiol Taiwanica. 2015;53(1):16–22.
- Cohen J, Vincent JL, Adhikari NKJ, Machado FR, Angus DC,
 Calandra T, et al. Sepsis: A roadmap for future research. Vol. 15,
 The Lancet Infectious Diseases. 2015. p. 581–614.
- 8. Calzada AS, Luis J, Adame N, Yunuem L, Ayala D, Aguilar ÓT, et al. Utilidad del volumen plaquetario medio para descartar sepsis. 2016;30(2):87–94.
- Freund Y, Lemachatti N, Krastinova E, Van Laer M, Claessens YE, Avondo A, et al. Prognostic Accuracy of Sepsis-3 Criteria for In-Hospital Mortality Among Patients With Suspected Infection Presenting to the Emergency Department. Jama. 2017;317(3):301– 8.
- Kucukardali Y, Onem Y, Terekeci H, Tangi F, Sahan B, Akyol A.
 Mean Platelet Volume (MPV) in Intensive Care Unit (ICU)
 Patients: Is it a useful parameter in assessing prediction for mortality? J Med Med Sci. 2010;1(April 2008):061–4.

- 11. Zampieri FG, Ranzani OT, Sabatoski V, de Souza HP, Barbeiro H, da Neto LMC, et al. An increase in mean platelet volume after admission is associated with higher mortality in critically ill patients. Ann Intensive Care. 2014;4:20.
- 12. López-Santiago N. La biometría hemática. Acta Pediátrica México. 2016;37(4):246–9.
- 13. Remi Neviere M. Sepsis syndromes in adults: Epidemiology, definitions, clinical presentation, diagnosis, and prognosis [Internet]. UpToDate. 2016. p. 1–19. Available from: https://www.uptodate.com/contents/sepsis-syndromes-in-adults-e?0Early Mortality in Severe Sepsis.&selectedTitle=5~150
- 14. Gregory A Schmidt, MD, Jess Mandel M. Evaluation and management of suspected sepsis and septic shock in adults [Internet]. UpToDate. 2016. p. 1–19. Available from: https://www.uptodate.com/contents/evaluation-and-managementof?Early Mortality in Severe Sepsis.&selectedTitle=6~150
- 15. INEC. Anuario de estadísticas vitales nacimientos y defunciones 2013. 2013.
- Suberviola B, Castellanos-Ortega A, González-Castro A, García-Astudillo LA, Fernández-Miret B. Valor pronóstico del aclaramiento de procalcitonina, PCR y leucocitos en el shock séptico. Med Intensiva. 2012;36(3):177–84.
- Carrillo-Esper R, Carrillo-Córdova DM, Carrillo-Córdova CA, Carrillo-Córdova LD. Volumen plaquetario medio. Su significado en la práctica clínica. Rev Invest Med Sur Mex, Enero-Marzo. 2013;20(1):17–20.
- 18. Kim CH, Kim SJ, Lee MJ, Kwon YE, Kim YL, Park KS, et al. An increase in mean platelet volume from baseline is associated with mortality in patients with severe sepsis or septic shock. PLoS One. 2015;10(3):1–13.
- 19. Gutiérrez-Romero A, Gutiérrez-Grobe Y, Carrillo-Esper R. Volumen plaquetario medio: el tamaño importa. Med Interna Mex.

- 2013;29(3):307-10.
- 20. Lawrence LK Leung MS. Overview of Hemostasis. UpToDate. 2016;1–37.
- Colkesen Y, Muderrisoglu H. The role of mean platelet volume in predicting thrombotic events. Clin Chem Lab Med. 2012;50(4):631–4.
- 22. Abrams CS. Platelet biology. UpToDate. 2013;1–19.
- Tomaiuolo M, Brass LF, Stalker TJ. Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interv Cardiol Clin. 2017;6(1):1–12.
- 24. Aoui C, Prigent A, Sut C, Tariket S, Hamzeh-Cognasse H, Pozzetto B, et al. The signaling role of cd40 ligand in platelet biology and in platelet component transfusion. Int J Mol Sci. 2014;15(12):22342–64.
- Panicker SR, Mehta-D'souza P, Zhang N, Klopocki AG, Shao B, McEver RP. Circulating soluble P-selectin must dimerize to promote inflammation and coagulation in mice. Blood. 2017;blood-2017-02-770479.
- 26. Hoffmann JJML. Reference range of mean platelet volume. Thromb Res. 2012;129(4):534–5.
- 27. Gao Y, Li Y, Yu X, Guo S, Ji X, Sun T, et al. The impact of various platelet indices as prognostic markers of septic shock. PLoS One. 2014;9(8):1–7.
- 28. Yardan T, Meric M, Kati C, Celenk Y, Atici AG. Mean platelet volume and mean platelet volume/platelet count ratio in risk stratification of pulmonary embolism. Med. 2016;52(2):110–5.
- 29. Azab B, Torbey E, Singh J, Akerman M, Khoueiry G, Mcginn JT, et al. Mean platelet volume/platelet count ratio as a predictor of long-term mortality after non-ST-elevation myocardial infarction. Platelets. 2011;22(8):557–66.
- 30. Metwaly K, Sameea EA, El-azab G, Assem M, Zakareya T, Raia GA. Mean platelet volume and mean platelet volume / platelet count

- ratio as markers for hepatocellular carcinoma in patients with chronic hepatitis C virus related cirrhosis. 2016;8(September):33–40.
- 31. Zhang L ut, Guo H, Xu J, Li B, Liu Y-J, Cheng C, et al. Activated platelets inhibit hepatocellular carcinoma cell differentiation and promote tumor progression via platelet-tumor cell binding.

 Oncotarget. 2016;5(0).
- 32. Oh GH, Chung SP, Park YS, Hong JH, Lee HS, Chung HS, et al. Mean Platelet Volume to Platelet Count Ratio as a Promising Predictor of Early Mortality in Severe Sepsis. Shock. 2016;47(3):Pendiente de publicación.
- 33. Ates S, Oksuz H, Dogu B, Bozkus F, Ucmak H, Yan??t F. Can mean platelet volume and mean platelet volume/platelet count ratio be used as a diagnostic marker for sepsis and systemic inflammatory response syndrome? Saudi Med J. 2015;36(10):1186– 90.
- 34. Li M, Li X, Fan K, Yu Y, Gong J, Geng S, et al. Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: an open-label, multicenter, randomized controlled trial. J Hematol Oncol. 2017;10(1):104.
- 35. Hurley SM, Lutay N, Holmqvist B, Shannon O. The dynamics of platelet activation during the progression of streptococcal sepsis. PLoS One. 2016;11(9):1–14.
- 36. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Vol. 43, Intensive Care Medicine. Springer Berlin Heidelberg; 2017. 304-377 p.
- Lupu F, Keshari RS, Lambris JD, Mark Coggeshall K. Crosstalk between the coagulation and complement systems in sepsis.
 Thromb Res. 2014;133(SUPPL. 1):S28–31.
- 38. Johansen ME. Hemostasis and endothelial damage during sepsis.

 Dan Med J. 2015;62(8).

- 39. Pettersen AA, Arnesen H, Seljeflot I. A brief review on high onaspirin residual platelet reactivity. Vascul Pharmacol. 2015;67:6–9.
- 40. Tracy I George M. Automated hematology instrumentation [Internet]. UpToDate. 2014. p. 1–40. Available from: https://www.uptodate.com/contents/automated-hematology-instru?ch_result&search=mean platelet volumen&selectedTitle=1~33
- 41. Dellinger R, Levy M, Rhodes A. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive care 2013;41(2):580–637.
- 42. Aubry A, Vieillard-Baron A. Sepsis, shock séptico en el adulto. EMC- Tratado Med. 2016;20(3):1–6.
- 43. AH. A-K. Multiple Organ Dysfunction Syndrome in Sepsis. [Internet]. Medscape. 2016 [cited 2017 Jul 19]. Available from: http://emedicine.medscape.com/article/169640-overview
- Department of Critical Care Medicine U of PS of M. What is qSOFA?[Internet]. 2017. Available from: http://www.qsofa.org/index.php#whatis
- 45. Ministerio de Salud Publica. Ley De Derechos Y Amparo Del Paciente. Msp. 2014;4.

ANEXOS

Cronograma General

				20	16				2017								
Actividade s	M a y.	J u n	J u I.	A g o.	S e pt	O c t.	N o v.	D i c	E n e.	F e b	M a r.	A b r.	M a y.	J u n	J u I.	A g o.	S e pt
Elaboración																	-
del Perfil																	
del Trabajo																	
de titulación																	
(Ficha																	
Técnica)																	
Corrección																	
de la Ficha																	
Técnica																	
Taller de																	
elaboración																	
de tesis																	
Entrega de																	
la Ficha																	
Técnica																	
Aprobación del perfil del																	
Trabajo de																	
Titulación																	
Elaboración																	
del antepr																	
oyecto																	
Entrega del																	
anteproyect																	
0																	
Corrección																	
del																	
anteproyect																	
0																	
Recolecció																	
n de datos																	
para																	
elaborar la																	
tesis																	
Elaboración																	
de la tesis																	
Entrega del																	

borrador									
final de la									
tesis									
Ajustes									
finales de la									
tesis									
Entrega									
final de la									
tesis									
Sustentació									
n de la tesis									

Memorando Nro. IESS-HTMC-CGMC-2017-2026-M

Guayaquil, 14 de junio de 2017

Sra. Med. María Antonieta Zunino Cedeño PARA:

Coordinador General de Investigación Hospital de Especialidades -

Teodoro Maldonado Carbo

ASUNTO: Informe de factibilidad del estudio "Índice volumén plaquetario

medio/plaquetas y mortalidad en pacientes con sepsis del Hospital Teodoro Maldonado Carbo periodo 2016*, presentado por el Sr. Samuel Quimí

De mi consideración:

En atención a su Memorando de la referencia del 09 de junio del 2017, esta Coordinación General de Medicina Crítica autoriza el estudio: "Índice volumén plaquetario medio/plaquetas y mortalidad en pacientes con sepsis del Hospital Teodoro Maldonado Carbo periodo 2016", presentado por el Sr. Samuel Quimí

Con sentimientos de distinguida consideración.

Atentamente,

Documento firmado electrónicamente

Espc. Laura Judith Zúñiga Fariño COORDINADOR GENERAL DE MEDICINA CRÍTICA, ENCARGADO HOSPITAL DE ESPECIALIDADES - TEODORO MALDONADO CARBO

Referencias:

- IESS-HTMC-CGI-2017-0376-M

- solicitud_de_estudio_de_factibilidad_sr_samuel_quimi.pdf
- cgi-2017-0376-m.pdf

WWW.iBSS.gob.BC / W BIESSACE FIESSACE IESSACE

Tabulaciones

q SOFA	PCR	Procalcitonina	Leucos
1	15,5	0,4	18310
3	44,7	100	48510
2	32,7	2,2	17190
2	13,3	0,8	8900
1	20,1	4,4	10080
1	1,5	1,4	5850
2	30,1	2,2	13750
2	0,77	9,9	8510
2	9,8	6,2	12780
2	5,2	2,7	13520
3	19,1	27,8	24100
1	12,7	5	20000
1	38,6	3,7	14560
1	23,5	1,3	1891
1	7,5	1,1	23760
1	10,8	0,1	11400
0	41,6	3,4	25190
0	10,1	1	9650
1	29	1	13440
0	11	0,2	6740
1	6,2	16	17120
2	15	19,6	12620
0	33,8	0,5	19620
1	23	3	12330
1	15,4	1,8	13910
1	12	0,4	13780
2	8,3	88,2	30780
2	24,7	5,5	44880
3	30,5	14,6	12070
1	15,8	11,8	11,93
1	12,7	0,5	13350
1	27,3	4,8	31980
1	15	6,2	3430
2	24,9	4,8	18840
2	33,8	16,1	12590
1	19,5	12,8	19140
1	22,6	17,7	10700
2	0,2	0,1	8590
1	32	0,3	14300
1	35,7	3,3	15530

0	34,8	6,9	15720
2	30,5	2,19	22750
0	29,5	3,7	11300
1	29,4	57,7	7,62

Hb	Hcto	Plaquetas x10n3	VPM	Indice VPM/Plaq
8,6	26,3	290	11,1	0,0383
11,1	32,4	224	10	0,0446
9,1	28	454,1	8,7	0,0192
9,3	28,6	330,4	10,1	0,0306
8,8	29,2	185,4	11,3	0,0609
10,7	31,3	201	10	0,0498
11,3	33,9	98	11,7	0,1194
11,1	34,3	99	10,7	0,1081
8,8	27,6	254	9,9	0,0390
9,3	29,7	228	9,7	0,0425
7,8	24,4	342	10	0,0292
7,9	23,5	424,1	9,9	0,0233
9,5	29,4	238	10	0,0420
12	36,9	167	10,6	0,0635
7,8	23,7	251,4	10,6	0,0422
10,8	34,6	164	9,7	0,0591
11,8	34,8	305	11,4	0,0374
9,6	32,8	146	11,9	0,0815
9,8	30,2	230	12,1	0,0526
8,8	27	180	10,5	0,0583
9,9	29,1	198	11,1	0,0561
11,1	35,5	257,4	10,8	0,0420
9,9	32	617	10,5	0,0170
6,2	19,6	62	11	0,1774
8,8	27,1	141	10,2	0,0723
12,3	36,4	308	10,6	0,0344
14	39	316	10,8	0,0342
8,2	24,8	333	10,4	0,0312
11,4	34,4	285	10,7	0,0375
11,3	33,6	134	8,9	0,0664
11	30,3	236	9,1	0,0386
8,9	26,4	222	12,2	0,0550
14,3	43,6	140	10,7	0,0764
8	25,3	131	11	0,0840
7,3	23	169	12,1	0,0716

9,3	30,4	583,1	9,5	0,0163
10,9	32,5	265	10	0,0377
13,7	39,4	111	13,2	0,1189
11,8	37,2	387	10,3	0,0266
8,8	25,7	129,4	12,3	0,0951
8,4	27,3	205	10,3	0,0502
8,6	29,3	336	10,4	0,0310
10,9	33,3	155	11,5	0,0742
11,3	34,8	67	11,1	0,1657

Na	K	UREA	Crea	AST	ALT
142	4,8	139	2,3	15	4
145	4,4	51	1,5	208	237
135	3,5	46	0,7	19	19
122	4,3	117	1,3	51	18
143	4,7	198	3	34	40
144	3,3	37	1,7	17	11
140	2,8	117	1	94	176
129	4,2	79	1,8	18	20
130	2,8	307	6,9	74	38
142	3,4	30	1,9	35	18
136	3,5	49	2,3	17	11
155	4,2	110	5,1	38	7
134	3,6	44	0,5	48	52
143	3,5	90	1,2	145	154
128	3,4	104	3,2	49	56
136	3,6	27	0,3	8	16
138	3,7	41	0,6	386	726
124	4,3	33	0,6	31	19
143	4	62	0,9	17	14
145	3,1	10	0,1	15	7
147	3,6	24	0,6	102	49
142	4,3	95	1,5	29	9
154	3,8	59	0,9	12	12
133	4,3	20	1	176	55
126	4,2	23	1	68	31
146	4,5	24	0,7	24	21
148	4,5	75	3,1	13	9
142	4,2	94	7,4	49	27
137	6,3	123	8	23	6
136	3,6	36	0,5	26	53

139	3,6	56,3	2	63	23
140	4,6	205	5,9	5	10
130	3,2	38	0,6	83	136
143	2,8	24	0,2	27	23
134	3,7	176	2,3	23	19
142	4,2	84	1,8	41	39
150	3,1	50	3,4	14	14
146	4,7	30	1,3	19	13
147	4,2	18	0,5	72	248
143	4,8	78	0,7	111	56
134	4,5	195	5,1	762	1036
143	4,7	137	4,3	16	8
142	3,8	49	6,7	42	15
149	3,6	71	1,7	20	3

Alb	Vasopres	EstanciaUCI	Mortalidad
2,2	0	4	0
2	1	13	0
2,2	1	24	1
2,8	0	35	0
2,2	1	7	1
2,6	1	18	1
2,2	1	33	1
2,3	1	33	1
1,5	0	8	1
3,6	0	19	0
1,8	1	12	1
2,7	1	17	1
2,7	0	21	0
2,4	1	45	0
3,1	0	8	0
1,6	0	59	0
2,4	0	6	0
1,9	0	65	0
1,7	0	14	0
1,4	1	19	1
1,9	1	21	0
1,3	1	35	1
2,4	0	15	0
1,5	1	12	0
2,7	0	12	1

3,5	0	26	0
2,6	1	5	1
2,5	1	30	1
3,7	0	14	1
3,5	0	54	0
2,7	0	33	1
1,8	0	19	0
1,9	1	25	0
2,6	1	3	1
1,7	1	20	1
1,4	1	94	1
3	1	16	1
3,1	1	8	1
3,5	0	3	0
2,6	0	13	0
2	0	9	0
1,5	1	24	1
3,4	0	6	0
1,7	1	2	1

ENFCV	ECerebroV	ENFrenal	PAS	PAD	FR
0	0	1	140	70	26
1	0	0	90	60	27
0	0	0	80	40	28
0	0	0	110	70	29
0	0	1	133	85	24
0	0	1	123	70	30
0	1	0	180	90	24
0	0	0	100	50	16
1	0	1	100	60	18
0	0	1	167	70	22
0	0	0	90	60	20
1	0	1	135	80	21
0	0	0	150	80	24
0	0	0	112	74	16
0	0	1	130	80	25
0	0	0	222	128	16
0	0	0	120	80	18
0	0	0	126	70	20
0	0	0	100	60	17
0	0	0	110	70	18

0	0	0	100	70	15
0	0	0	150	80	22
1	1	0	120	80	18
0	0	0	120	85	23
0	0	0	120	70	18
0	0	0	130	70	32
1	0	1	80	60	24
0	0	1	100	50	18
0	0	1	258	107	23
0	0	0	159	91	26
0	0	1	159	84	16
0	0	0	124	83	36
0	0	0	100	60	16
0	0	0	80	60	22
0	0	1	110	52	27
0	0	0	116	70	16
0	0	1	170	70	12
0	1	1	150	80	32
0	0	0	110	60	19
1	0	0	167	90	18
0	0	0	120	80	16
0	0	0	110	59	18
0	0	1	160	100	19
0	0	1	120	80	24

Edad	Sexo	VIH	HTA	DBT	TB
78	0	0	1	1	0
64	1	0	1	1	0
67	1	0	1	0	0
91	1	0	1	1	0
65	0	0	1	0	0
67	0	0	1	0	0
94	1	0	1	1	0
78	0	0	0	1	0
89	1	0	1	1	0
72	0	0	1	1	0
73	1	0	1	0	0
74	0	0	1	1	0
35	1	0	0	0	0
69	1	0	1	0	0
77	1	0	1	0	0

36 1 0 0 0 47 0 0 1 0 0 61 1 0 0 0 0 60 0 0 0 0 1 26 1 1 0 0 0 71 1 0 0 0 0 62 1 0 1 0 0 23 1 0 0 0 0 37 1 1 0 0 0 38 1 0 0 0 0 38 1 0 0 0 1 71 0 0 1 1 0 60 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 49 0	l I	1	1		ı	
47 0 0 1 0 0 61 1 0 0 0 0 60 0 0 0 0 1 26 1 1 0 0 0 71 1 0 0 0 0 62 1 0 1 0 0 23 1 0 0 0 0 37 1 1 0 0 0 38 1 0 0 0 0 38 1 0 0 0 1 71 0 0 1 1 0 0 38 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	48	0	0	1	0	0
61 1 0 0 0 0 60 0 0 0 0 1 26 1 1 0 0 0 71 1 0 0 0 0 62 1 0 1 0 0 23 1 0 0 0 0 37 1 1 0 0 0 38 1 0 0 0 0 38 1 0 0 0 1 71 0 0 1 1 0 0 60 1 0 1 1 0 0 0 0 0 81 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <						
60 0 0 0 0 1 26 1 1 0 0 0 71 1 0 0 0 0 62 1 0 1 0 0 23 1 0 0 0 0 37 1 1 0 0 0 38 1 0 0 0 1 71 0 0 1 1 0 60 1 0 1 1 0 60 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 49 0 0 1 0 0 49 0 0 1 0 0 76 0 0 0 0 0 60						
26 1 1 0 0 0 71 1 0 0 0 0 62 1 0 1 0 0 23 1 0 0 0 0 37 1 1 0 0 0 38 1 0 0 0 1 71 0 0 1 1 0 60 1 0 1 1 0 57 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 49 0 0 1 0 0 49 0 0 1 0 0 76 0 0 0 0 0 60 1 0 0 0 0 60						
71 1 0 0 0 0 62 1 0 1 0 0 23 1 0 0 0 0 37 1 1 0 0 0 38 1 0 0 0 1 71 0 0 1 1 0 60 1 0 1 1 0 60 1 0 1 1 0 57 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 0 49 0 0 1 0 0 0 0 0 79 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0						
62 1 0 1 0 0 23 1 0 0 0 0 37 1 1 0 0 0 38 1 0 0 0 1 71 0 0 1 1 0 60 1 0 1 1 0 57 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 49 0 0 1 0 0 49 0 0 1 0 0 76 0 0 0 0 0 79 1 0 1 1 0 60 1 0 0 0 0 69 1 0 1 0 0 69						
23 1 0 0 0 37 1 1 0 0 0 38 1 0 0 0 1 71 0 0 1 1 0 60 1 0 1 1 0 60 1 0 1 1 0 57 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 59 1 0 0 1 0 49 0 0 1 0 0 49 0 0 1 0 0 76 0 0 0 0 0 60 1 0 0 0 0 60 1 0 0 0 0 60 0						
37 1 1 0 0 0 38 1 0 0 0 1 71 0 0 1 1 0 60 1 0 1 1 0 57 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 59 1 0 0 1 0 49 0 0 1 0 0 49 0 0 1 0 0 76 0 0 0 0 0 60 1 0 0 0 0 60 1 0 0 0 0 60 0 0 1 1 0 69 1 0 1 0 0 65						
38 1 0 0 0 1 71 0 0 1 1 0 60 1 0 1 1 0 57 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 59 1 0 0 1 0 49 0 0 1 0 0 76 0 0 0 0 0 79 1 0 1 1 0 60 1 0 0 0 0 60 1 0 0 0 0 69 1 0 1 0 0 65 0 0 1 0 0 65 0 0 1 0 0 62	23			0		
71 0 0 1 1 0 60 1 0 1 1 0 57 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 59 1 0 0 1 0 49 0 0 1 0 0 49 0 0 1 0 0 76 0 0 0 0 0 79 1 0 1 1 0 60 1 0 0 0 0 60 1 0 0 0 0 69 1 0 1 0 0 69 1 0 0 0 0 65 0 0 1 0 0 65	37	1	1	0	0	
60 1 0 1 1 0 57 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 59 1 0 0 1 0 49 0 0 1 0 0 76 0 0 0 0 0 79 1 0 1 1 0 60 1 0 0 0 0 60 1 0 0 0 0 60 0 0 1 1 0 0 69 1 0 1 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 53 1 0 0 0 0	38	1	0	0		1
57 1 0 1 1 0 47 1 0 0 0 0 81 1 0 1 1 0 59 1 0 0 1 0 49 0 0 1 0 0 76 0 0 0 0 0 79 1 0 1 1 0 60 1 0 0 0 0 60 1 0 0 0 0 69 1 0 1 0 0 18 0 0 0 0 0 65 0 0 1 0 0 62 1 0 0 0 0 62 1 0 0 0 0 32 0 0 1 0 0	71		0			0
47 1 0 0 0 0 81 1 0 1 1 0 59 1 0 0 1 0 49 0 0 1 0 0 76 0 0 0 0 0 79 1 0 1 1 0 60 1 0 0 0 0 60 1 0 0 0 0 69 1 0 1 0 0 18 0 0 0 0 0 65 0 0 1 0 0 53 1 0 0 0 0 62 1 0 0 0 0 32 0 0 1 0 0	60	1	0	1	1	0
81 1 0 1 1 0 59 1 0 0 1 0 49 0 0 1 0 0 76 0 0 0 0 0 79 1 0 1 1 0 60 1 0 0 0 0 60 0 0 1 1 0 69 1 0 1 0 0 18 0 0 0 0 0 65 0 0 1 0 0 65 0 0 1 0 0 62 1 0 0 0 0 32 0 0 1 0 0	57	1	0	1	1	0
59 1 0 0 1 0 49 0 0 1 0 0 76 0 0 0 0 0 79 1 0 1 1 0 60 1 0 0 0 0 60 0 0 1 1 0 0 69 1 0 1 0 0 0 0 18 0 0 0 0 0 0 0 65 0 0 1 0 0 0 53 1 0 0 0 0 0 62 1 0 0 0 0 0 32 0 0 1 0 0 0	47	1	0	0	0	0
49 0 0 1 0 0 76 0 0 0 0 0 79 1 0 1 1 0 60 1 0 0 0 0 60 0 0 1 1 0 69 1 0 1 0 0 18 0 0 0 0 0 65 0 0 1 0 0 53 1 0 0 0 0 62 1 0 0 0 0 32 0 0 1 0 0	81	1	0	1	1	0
76 0 0 0 0 79 1 0 1 1 0 60 1 0 0 0 0 60 0 0 1 1 0 69 1 0 1 0 0 18 0 0 0 0 0 65 0 0 1 0 0 53 1 0 0 0 0 62 1 0 0 0 0 32 0 0 1 0 0	59	1	0	0	1	0
79 1 0 1 1 0 60 1 0 0 0 0 60 0 0 1 1 0 0 69 1 0 1 0 0 0 0 18 0 <td>49</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td>	49	0	0	1	0	0
60 1 0 0 0 60 0 0 1 1 0 69 1 0 1 0 0 18 0 0 0 0 0 0 65 0 0 1 0 0 0 53 1 0 0 0 0 0 62 1 0 0 0 0 0 32 0 0 1 0 0 0	76	0	0	0	0	0
60 0 0 1 1 0 69 1 0 1 0 0 18 0 0 0 0 0 65 0 0 1 0 0 53 1 0 0 0 0 62 1 0 0 0 0 32 0 0 1 0 0	79	1	0	1	1	0
69 1 0 1 0 0 18 0 0 0 0 0 65 0 0 1 0 0 53 1 0 0 0 0 62 1 0 0 0 0 32 0 0 1 0 0	60	1	0	0	0	0
18 0 0 0 0 65 0 0 1 0 0 53 1 0 0 0 0 62 1 0 0 0 0 32 0 0 1 0 0	60	0	0	1	1	0
65 0 0 1 0 0 53 1 0 0 0 0 62 1 0 0 0 0 32 0 0 1 0 0	69	1	0	1	0	0
53 1 0 0 0 0 62 1 0 0 0 0 32 0 0 1 0 0	18	0	0	0	0	0
62 1 0 0 0 0 32 0 0 1 0 0	65	0	0	1	0	0
32 0 0 1 0 0	53	1	0	0	0	0
	62	1	0	0	0	0
48 1 0 1 1 0	32	0	0	1	0	0
	48	1	0	1	1	0

FECHA	HISTORIA	DIAGNOSTICOS
20160101	1474924	A419 R572
20160104	97432	A419
20160104	97432	A419
20160105	97432	A419
20160106	727514	N180 A419
20160108	97432	A419
20160108	727514	N180 A419
20160108	1513697	C20 A419
20160108	1513697	C20 A419
20160109	97432	A419

20160109	1535472	A419
20160112	97432	A419
20160112	97432	A419
20160112	97432	A419 R56
20160115	154582	A419
20160115	154582	A419
20160115	154582	A419
20160116	401035	I46 A419 N180
20160116	401035	N180 A419
20160117	698553	J18 J960 A419
20160117	1579297	A419 K72 N17
20160118	1579262	A35 A419
20160119	1579262	A35 A419
20160119	1579262	A35 A419
20160120	1272932	N18 A419
20160120	1272932	A419 N18
20160120	1272932	N18 A419
20160121	1272932	N18 A419
20160129	654980	J960 A419 R10
20160129	1584401	J960 A419
20160129	1584401	A419 J960
20160201	1432153	A419 N390
20160202	1585535	R100 A419
20160202	1432153	A419 N17
20160202	1423320	A419 R572 E11
20160206	297340	A419 R572 N17
20160211	1587289	I60 S825 A419
20160211	1587289	I60 S825 A419
20160214	1219322	A419 R572
20160214	1219322	A419 N17
20160219	1517571	R10 A419
20160221	1584830	A419
20160221	574539	J18 A419
20160221	1584830	A419
20160221	510265	D61 J96 A419
20160221	574539	A419
20160221	776994	A419 J18
20160222	53658	A419 N180 E10
20160225	1509947	A419 N18 J18
20160225	604625	A419 C26
20160225	831983	Z48 A419
20160225	1509947	A419 N18
20160226	1589772	A419 N390

20160226	604625	A419 C26
20160226	604625	C49 A419
20160227	831983	A419 Z48
20160227	1219322	A419 N180 J18
20160227	1221398	J440 J18 A419
20160227	1221398	J440 J18 A419
20160227	831983	A419 Z48
20160227	1219322	J18 A419 N180
20160229	1219322	A419 N180
20160302	1219322	A419 J18 N180
20160304	770301	J18 N180 A419
20160304	1219322	N180 A419
20160305	186274	A419
20160305	549161	A419 J18 E131
20160305	770301	N18 J18 A419
20160305	549161	A419
20160307	263080	A419 C18
20160307	770301	J18 A419
20160307	263080	I46 A419 C18
20160308	1496255	A419 K704 K703
20160308	1496255	A419 K704 K703
20160312	515602	J18 A419 Z48
20160312	308626	J18 A419 J960
20160314	515602	J18 A419 Z48
20160314	1337458	R50 A419 Z988 D50
20160315	1598551	A419
20160316	45985	K74 A419
20160320	1590160	A419 J189 C910
20160320	1590160	A419 J189 C910
20160321	1590160	A419 J189 C910
20160323	770301	A419
20160328	1563576	A419 N18
20160404	1603662	J80 A419
20160404	695419	N180 A419
20160405	695419	N180 A419
20160405	695419	N18 A419
20160405	1301915	N18 A419
20160405	1601002	A419
20160406	501549	A419
20160406	501549	A419 J18
20160406	1590984	l63 J15 A419
20160407	695419	A419
20160407	695419	A419 N18 J960

20160409	501549	A419
20160409	1301915	A419
20160410	1301915	A419
20160410	501549	A419
20160410	1301915	A419
20160410	501549	A419
20160411	1421262	L031 A419
20160411	1547085	A419
20160411	1421262	L031 A419 E878
20160411	1547085	M321 A419
20160411	1301915	A419
20160411	1547085	M321 A419
20160411	1606693	A419
20160412	1547085	M321 A419
20160412	1421262	L031 A419
20160412	1421262	L031 A419 E878
20160412	1547085	M321 A419
20160412	1547085	M321 A419
20160413	1547085	M321 A419
20160414	1547085	M321 A419
20160415	1547085	M32 A419
20160415	1547085	M321 A419
20160415	1547085	M321 A419
20160415	1220311	C900 N18 A419
20160415	1301915	A419 Z48
20160416	1301915	A419 Z48
20160416	1547085	M321 A419
20160417	1547085	M321 A419
20160417	1596184	A419
20160417	695419	A419
20160417	1301915	A419
20160417	1596184	A419
20160417	1301915	A419
20160418	1547085	M321 A419 D64
20160418	100979	A419
20160420	1301915	A419 Z540
20160422	1301915	A419 Z540

00400:00		
20160422	488964	E101 N151 A419
20160422	1596184	J18 C921 A419
20160422	1547085	A419 M321
20160422	1301915	A419
20160422	1287071	A419
20160422	488964	E101 N151 A419
20160422	1301915	N18 A419
20160422	1508083	E101 A419
20160423	1301915	A419
20160423	488964	A419
20160425	695419	N18 A419
20160428	1612489	A419 I26 J960
20160428	1612489	A419
20160428	695419	N18 A419
20160429	1508083	A419
20160429	1508083	A419 E101
20160429	695419	N18 A419
20160429	1508083	A419
20160430	695419	A419
20160503	1508083	A419
20160503	1508083	A419
20160503	1508083	A419
20160503	695419	A419
20160504	493503	A419
20160504	24754	A419
20160505	1508083	A419
20160507	1508083	A419
20160507	695419	A419
20160507	695419	A419
20160507	1508083	A419
20160507	695419	A419
20160507	1508083	A419
20160508	695419	A419
20160509	695419	A419
20160509	1508083	A419
20160509	1508083	A419
20160510	1508083	A419 E101
20160512	1617356	A419 N17 E11
20160513	312544	A419
20160513	1189391	N180 A419
20160513	312544	A419
20160515	1587697	A419 Z48 R100
20160515	1193339	N18 A419 R50 I10

20160515	541158	N321 Z48 A419
20160515	1615764	A419
20160515	1615764	A419
20160515	1615764	A419
20160516	1615764	A419 Z48 K572
20160517	1615764	A419 Z48
20160518	1615764	A419 R100 Z48
20160519	1615764	A419 R100 Z48
20160519	1615764	A419 R100 Z48
20160519	248589	A419
20160519	248589	A419
20160523	1615764	A419
20160523	1587697	N17 R572 A419
20160523	136682	N17 A419
20160524	136682	N17 A419
20160524	827112	C91 A419
20160525	1615764	A419
20160526	1615764	A419 Z48 N17
20160526	1615764	A419 N17
20160527	576828	I95 A419
20160527	1615764	A419 R100 Z48
20160527	1587697	Z48 A419
20160527	5845	J18 J960 A419
20160527	5845	A419
20160530	792319	A419 R100 J960
20160604	1587697	A419
20160604	1587282	A419
20160605	1587282	A419
20160605	1587697	A419
20160606	1587697	S311 A419
20160607	1587697	A419
20160607	1587282	A419
20160609	1622450	A419
20160610	1625480	M009 A419
20160612	1587697	Z48 A419
20160612	1619522	Z48 A419
20160616	629236	N18 A419
20160616	1626899	K85 A419
20160617	411402	R100 A419 R572
20160620	643427	J18 A419
20160620	209187	A419
20160621	100595	Z48 N17 A419
20160622	209187	A419 Z48
	I	

20160622	1621729	A419
20160624	1587697	A419
20160624	1612794	A419 Z48 K45
20160624	1587697	A419
20160624	1621729	A419
20160625	1587697	A419
20160627	1587697	Z48 A419
20160628	242054	A419
20160628	1587697	A419
20160628	1351912	A419
20160628	242054	A419
20160629	1351912	A419
20160629	242054	A419
20160629	1351912	R100 A419
20160629	279633	A419
20160630	1529259	A419 Z48
20160630	1512875	A419
20160701	242054	A419 K74
20160701	1623540	M321 A419 N04
20160702	242054	K74 A419 J18
20160702	1351912	A419
20160702	1587697	A419 J18
20160702	1612794	A419 J80 J18
20160705	1529259	A419
20160705	242054	K74 A419
20160705	242054	K74 A419
20160706	1529259	A419
20160706	719795	I891 A419
20160708	183514	J18 A419
20160708	1351912	A419
20160708	1529259	A419 J18
20160710	1612794	A419 J80
20160711	1637439	A419
20160711	1612794	A419
20160712	541861	C56 E880 A419
20160712	130092	A419
20160713	541861	C56 E880 A419
20160713	1529259	A419 C900 J960
20160714	673	I500 A419
20160714	249622	J18 A419
20160714	1449316	R100 A419
20160714	1160224	A419
20160715	1587697	R100 A419
_5100710	1007007	11100 71110

20160715	249622	A419 J17
20160715	1587697	R10 A419
20160716	249622	A419 J17
20160716	1587697	R10 A419
20160717	1587697	R100 A419
20160718	249622	J17 A419
20160718	1529259	A419
20160718	1612794	Z48 A419
20160718	1612794	A419 J18 Z48
20160718	1529259	J960 A419
20160718	1351912	Z48 A419
20160718	1574167	A419
20160718	1587697	A419 R100
20160720	1612794	A419
20160720	693392	C49 B961 A419
20160720	1632580	A419
20160720	1574167	A419
20160720	1574167	N180 A419
20160721	1640704	J96 A419
20160721	1574167	N18 A419
20160721	1574167	N18 A419
20160721	1529259	A419 C900
20160721	693392	C49 A419 B961
20160721	1640704	J96 A419 I46
20160721	34660	A419 N228
20160722	1574167	N18 A419
20160722	1529259	A419 J18
20160722	1529259	A419 J18
20160722	1351912	A419 Z48
20160722	1612794	A419
20160722	1612794	A419
20160722	1351912	A419
20160722	1632580	A419 K74
20160722	1529259	C900 A419
20160722	1632580	A419
20160723	1351912	A419
20160723	1632580	A419
20160724	1351912	A419
20160725	693392	C49 A419
20160725	1351912	A419
20160726	1529259	A419
20160726	512695	A419 N18
20160726	1612794	A419

20160726	1641931	Z48 A419
20160726	1351912	A419
20160726	1564931	J15 A419
20160726	1625378	M321 A419
20160727	1632580	A419
20160727	1612794	A419
20160727	1641931	A419
20160728	693392	C49 A419
20160728	1351912	A419
20160729	1529259	A419
20160729	1351912	A419
20160729	693392	C49 A419
20160730	1529259	A419
20160803	576828	A419
20160804	541861	C56 A419
20160804	1529259	A419 J18 C900
20160807	1635573	I63 A419
20160808	1643165	A419 R100
20160809	1270273	A419 N390
20160809	745726	A419
20160809	1643165	A419
20160810	1643165	A419
20160810	1332242	R572 A419 I48
20160810	1124048	Z540 A419
20160811	1640471	J80 A419
20160811	593891	A419
20160815	1647554	A419
20160815	576828	A419
20160815	1647554	A419
20160815	1647554	A419
20160815	576828	A419 L89
20160816	1270273	A419 N390
20160816	576828	A419
20160816	1640471	A419
20160816	1640471	A419
20160816	576828	L89 A419
20160817	545913	N18 A419
20160817	576828	A419
20160818	576828	A419 J90
20160819	576828	A419
20160819	576828	A419 Z48
20160819	1650428	A419
20160820	1650428	A419

20160820	1640471	A419 N17
20160820	576828	A419
20160820	1650428	A419
20160821	1651771	A419
20160821	622285	A419
20160821	1558168	N18 A419
20160822	1647554	A419
20160822	1168367	R572 A419 R100
20160822	1504540	A419
20160822	1504540	A419
20160822	1647554	A419
20160823	1647554	A419
20160823	1456874	A419
20160823	1456874	A419
20160823	1647554	A419
20160823	1647554	A419
20160823	1456874	Z48 A419
20160823	1651771	A419
20160823	1650428	A419
20160823	1640471	A419
20160823	576828	A419
20160823	1647554	A419
20160824	1504540	A419
20160824	1651771	A419
20160824	1647554	A419
20160824	1647554	A419
20160824	1456874	A419
20160824	1651771	A419
20160824	1650428	A419
20160824	1456874	S361 A419 S06
20160824	1650428	A419 E87
20160825	1640471	A419
20160825	1647554	A419
20160825	1651771	A419
20160825	1640471	A419
20160825	1650428	A419
20160825	1651771	A419
20160825	1640471	A419
20160825	1640471	A419
20160826	1589974	N133 A419
20160826	1647554	A419
20160826	1651771	A419
20160826	1647554	A419

20160827	716588	C920 J960 A419
20160827	716588	C920 J96 A419
20160827	1647554	A419
20160828	593891	A419 T874 I46
20160829	1647554	A419
20160829	1640471	J80 A419
20160829	717803	N18 A419
20160829	1647554	A419 E11
20160829	1647554	A419
20160831	1647554	A419
20160902	766439	A419 D570
20160902	1415337	N18 A419 K922
20160902	211217	E101 A419
20160904	255149	E039 A419 R572
20160904	1647957	A419 J80 Z48
20160904	255149	A419
20160904	255149	A419 N17
20160905	1647957	J80 A419
20160905	255149	A419
20160905	211217	E10 A419
20160905	1647957	A419 J80
20160905	1270273	A419
20160907	1657069	A419 J180 H100
20160907	1657069	A419 J180 H100
20160908	1299943	S27 Z48 A419
20160908	1650909	Z48 A419
20160908	1647957	A419
20160908	1524607	N17 A419
20160908	1524607	N17 A419
20160909	1524607	A419
20160909	1651869	A419 J18
20160909	1647957	A419 J960 D68
20160909	1647957	A419 Z540
20160909	74712	A419
20160912	1299943	A419 Z48
20160912	1647957	A419
20160912	1650909	A419
20160912	759665	N18 A419
20160912	1650245	A419
20160912	1650245	A419 E10
20160912	759665	N180 A419
20160913	1647957	A419
20160913	1650245	A419 E10

20160913	1650245	A419
20160913	1650245	A419
20160914	74712	A419 D72 C061
20160914	1650245	A419 N18
20160914	74712	C061 D72 A419
20160916	1284993	A419
20160918	546565	R57 A419 N185
20160918	1284993	A419
20160921	195062	A419 E11 R572
20160922	1650909	A419
20160923	1660441	A419 B20
20160923	1660441	A419
20160924	1634853	A419 A09 C411
20160924	1660441	D77 K922 N17 A419 B20 B487
20160924	1660441	D77 K922 N17 A419 B20 B487
20160925	675440	D46 J15 A419
20160925	675440	D46 J15 A419
20160927	579129	N18 A419
20160927	579129	N18 A419
20160928	579129	N18 A419 J90
20160928	579129	N18 A419 J90
20160929	1664678	A419
20160929	304141	A419
20161002	267258	A419
20161004	267258	A419 Z48
20161006	53852	C839 A419 N17
20161006	1286571	C920 A419
20161006	1286571	C920 A419
20161007	1286571	A419
20161010	1304950	D61 J96 A419
20161011	1304950	D61 A419
20161011	1165248	A419
20161012	1669609	N180 A419
20161012	1669609	N180 A419
20161017	1670994	A419 N390
20161019	559712	J96 A419 R100
20161020	559712	J96 A419 K564
20161022	646550	A419 R100 Z489
20161022	646550	A419
20161026	1664838	A419 N17
20161026	1664838	A419
20161026	1518225	A419
20161026	1518225	A419
	I.	1

	4.5	
20161028	134462	A419 J158 R100
20161028	134462	A419
20161028	134462	J15 A419
20161030	210306	A419
20161031	1676215	J80 A419 C549
20161103	523357	N17 A419
20161103	523357	A419
20161106	1478964	A419
20161107	523357	A419
20161109	1509207	A419
20161110	1509207	A419 A09 K92
20161110	1509207	A419
20161111	1509207	A419 K922 N41
20161111	646550	A419
20161112	1509207	A419 K922 N41
20161112	1509207	A419
20161115	582836	A419 I26 Z48
20161115	582836	A419
20161115	582836	A419 I26
20161115	582836	A419
20161118	582836	A419 J80
20161119	1675811	A419
20161123	582836	A419
20161124	1675811	A419
20161127	646550	A419
20161127	1636060	A419 K659
20161128	646550	A419
20161128	646550	A419
20161129	646550	A419
20161129	646550	A419
20161129	646550	A419
20161130	1685069	A419
20161130	1659137	A419 S06 T09
20161130	1659137	S06 T09 A419
20161201	1659137	S06 T90 A419
20161201	1659137	S06 T90 A419
20161201	582836	A419 Z48
20161205	1572088	K56 A419 K26
20161205	671452	C910 A419 J96
20161211	1289177	N390 A419
20161212	1678339	A419
20161216	1689159	N18 A419 J18
20161216	1690491	J189 A419

20161221	556446	A419
20161229	1619043	N18 A419
20161229	421731	N180 A419
20161229	1619043	N180 A419
20161230	1690460	N18 A419